

Solve by square-root method:

$$(5x + 4)^{2} + 36 = 0$$

 $(5x + 4)^{2} = -36$
 $5x + 4 = \pm \sqrt{-36}$
Make a perfect-Square:
 $x^{2} - \frac{1}{2}x + (\frac{1}{4})^{2} = (x - \frac{1}{4})^{2} \Rightarrow x^{2} - \frac{1}{2}x + \frac{49}{16} = (x - \frac{1}{4})^{2}$

Solve by completing the square method:

$$\chi^{2} + 12\chi + 40 = 0$$

 $\chi^{2} + 12\chi + 6^{2} = -40 + 6^{2}$
 $\chi + 6 \chi^{2} = -4$
Use S.R.M. $\chi + 6 = \pm \sqrt{-4}$ $\chi + 6 = \pm 2i$
 $\chi = -6 \pm 2i$
 $\chi = -6 \pm 2i$

Solve by the Completing the Square method:

$$x^{2} - 3x - 5 = 0$$
Divide by 2 to make the Leading Coef. 1.

$$\frac{3}{2}x^{2} - \frac{3}{2}x - \frac{5}{2} = 0$$

$$x^{2} - \frac{3}{2}x - \frac{1}{2} = \frac{49}{16}$$

$$x - \frac{3}{4} - \frac{1}{4} = \frac{10}{4} = \frac{5}{2}$$
Now S.R.M.

$$x - \frac{3}{4} = \frac{1}{4}\sqrt{\frac{49}{16}}$$

$$x = \frac{3}{4} - \frac{1}{4} = \frac{-1}{4} = -1$$

$$x = \frac{3}{4} \pm \frac{1}{4} = \frac{1}{4}$$

Now Quadratic Sormula
IS
$$0x^{2} + bx + c = 0$$
, $a \neq 0$, then
 $x = \frac{-b \pm \sqrt{b^{2} + 4ac}}{2a} \rightarrow Discriminant$
Ex: Solve $x^{2} - 10x + 29 = 0$
 $c = 1$ $b = -10$ $c = 29$
 $b^{2} - 4ac = (-10)^{2} - 4(1)(29) = 100 - 116 = -16$
 $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-(-10)\pm\sqrt{-46}}{2(1)} = \frac{10\pm4i}{2} = \frac{10}{2}\pm\frac{4}{2}i$
 $= \frac{-5\pm2i}{2}i$

Solve by using the quadratic formula:

$$(2x-1)(3x+1) = 21$$

FOIL, Simplify, write in $0x^2+bx+(=0)$
 $50rm$.
 $6x^2 + 2x - 3x - 1 - 21 = 0$
 $6x^2 - x - 22 = 0$
Identify $0, b, c, and Compute b^2-4ac$.
 $0 = 6$ $b = -1$ $C = -22$
 $b^2 - 4ac = (-1)^2 - 4(6)(-22) = 1 + 528 = 529$
Now use the Q-Sormula.
 $x = \frac{-b}{2} + \sqrt{b^2 - 4ac} = \frac{-(-1)}{12} + \sqrt{529} = \frac{1 + 23}{12}$
 $x = \frac{1 + 23}{12} = \frac{24}{12} = \frac{2}{12} = \frac{x = \frac{1 - 23}{12}}{12} = \frac{-22}{12} = \frac{11}{12} = \frac{-22}{12} =$

The product of two consecutive integers is 90.
Sind all such integers.
$$bx \notin x+1$$

 $x(x+1)=90$ $x^2 + x = 90$ $x^2 + x - 90 = 0$
 $b^2 - 40c = 1^2 - 4(1)(-90)$ $a=1$ $b=1$ $c=-90$
 $= 1 + 360 = 361$
 $x = \frac{-b \pm \sqrt{b^2 - 40c}}{20} = \frac{-1 \pm \sqrt{361}}{2} = \frac{-1 \pm 19}{2}$
 $x = \frac{-1 \pm 19}{2} = \frac{18}{2} = 9$ $x = \frac{-1 - 19}{2} = \frac{-20}{2} = -10$
 $x + 1 = 10$ $x + 1 = -9$
 $-10, -93$

Г

Find two consecutive even integers such that
Lex
$$x \notin x+2$$

their product is 80.
 $\chi(x+2) = 80$ $\chi^2 + 2\chi + 1^2 = 80 + 1^2$
 $\chi(x+2) = 80$ $\chi^2 + 2\chi + 1^2 = 80 + 1^2$
 $\frac{1}{2} \cdot 2 = 1$
 $\chi = 1$
 $\chi = 1$
 $\chi = 1$
 $\chi = -1$
 $\chi = -1$
 $\chi = -1$
 $\chi = -1$

The length of a rectangular ganden is 19t longer than twice its width. Area of the garden is 55 St2. 11 Ft Sind its dimensions. 354 by 11 5 2 10 5**S**t A= 55 A = 55 $\chi(2x+1) = 55$ 2×+1)0 $2\chi^2 + \chi - 55 = 0$ **a**=2 **b**=1 **C**=-55 **b**²-4a(= 1^{2} -4(2)(-55) = 441 $\chi_{z} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-1 \pm \sqrt{-1 \pm \sqrt{-1}}}{2(2)} = \frac{-1 \pm 21}{-1 \pm 21}$ $\chi = \frac{1-21}{4} = \frac{-22}{4} = \frac{2}{2}$ $\chi = \frac{-1+21}{4} = \frac{20}{4} = 5$ school => Next Thursday NO week after nextweek is Break (Spring