

Solve by square-root method:

$$
\begin{aligned}
& (5 x+4)^{2}+36=0 \\
& (5 x+4)^{2}=-36 \\
& 5 x+4= \pm \sqrt{-36}
\end{aligned} \quad \begin{aligned}
& 5 x+4= \pm 6 i \\
& 5 x=-4 \pm 6 i \\
& {\left[x=\frac{-4}{5} \pm \frac{6}{5} i\right]}
\end{aligned}\left\{\begin{array}{l}
-4 \\
5+\frac{6}{5} i
\end{array}\right]
$$

Make a perfect-Square:

$$
x^{2}-\frac{7}{2} x+\left(\frac{7}{4}\right)^{2}=\left(x-\frac{7}{4}\right)^{2}{ }^{\frac{7}{2}} \Rightarrow x^{2}-\frac{7}{2} x+\frac{49}{16}=\left(x-\frac{7}{4}\right)^{2}
$$

Solve by Completing the Square method:

$$
\begin{aligned}
& x^{2}+12 x+40=0 \\
& x^{2}+12 x+6^{2}=-40+6^{2} \\
& \frac{1}{2} \cdot 12^{2}=6 \\
& (x+6)^{2}=-4
\end{aligned}
$$

$$
\begin{array}{ll}
\text { use S.R.M. } \quad x+6= \pm \sqrt{-4} \quad & \begin{array}{l}
x+6= \pm 2 i \\
\\
\end{array} \frac{x=-6 \pm 2 i}{\{-6 \pm 2 i\}}
\end{array}
$$

Solve by the completing the Square method:

$$
x^{2}-3 x-5=0
$$

Divide by 2 to make the Leading Coef.1.

$$
\begin{aligned}
& \frac{2}{2} x^{2}-\frac{3}{2} x-\frac{5}{2}=0 \\
& x^{2}-\frac{3}{2} x-\frac{5}{2}=0 \\
& x^{2}-\frac{3}{2} x+\left(\frac{3}{4}\right)^{2}=\left(\frac{5}{2}+\left(\frac{3}{4}\right)^{2}\right\} \\
& \frac{1}{2} \cdot \frac{3}{2}=\frac{3}{4} \\
& \left(x-\frac{3}{4}\right)^{2}=\frac{49}{16} \quad \longrightarrow x=\frac{3}{4}+\frac{7}{4}=\frac{10}{4}=\left[\frac{5}{2}\right] \\
& \text { Now S.R.M. } \\
& x-\frac{3}{4}= \pm \sqrt{\frac{49}{16}} \quad x=\frac{3}{4}-\frac{7}{4}=\frac{-4}{4}=-1 \\
& x=\frac{3}{4} \pm \frac{7}{4} \quad\left\{-1, \frac{5}{2}\right\}
\end{aligned}
$$

Now Quadratic formula
If $a x^{2}+b x+c=0, a \neq 0$, then

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \longrightarrow \text { Discriminant }
$$

Ex: Solve $x^{2}-10 x+29=0$

$$
\begin{aligned}
& a=1 \quad b=-10 \quad c=29 \\
& b^{2}-4 a c=(-10)^{2}-4(1)(29)=100-116=-16 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-10) \pm \sqrt{-16}}{2(1)}=\frac{10 \pm 4 i}{2}=\frac{10}{2} \pm \frac{4}{2} i \\
&=5 \pm 2 i \\
&\{5 \pm 2 i\}
\end{aligned}
$$

Solve by using the quadratic formula:

$$
(2 x-1)(3 x+1)=21
$$

FOIL, simplify, write in $a x^{2}+b x+c=0$ form.

$$
\begin{aligned}
& 6 x^{2}+2 x-3 x-1-21=0 \\
& 6 x^{2}-x-22=0
\end{aligned}
$$

Identify a, b, c, and Compute $b^{2}-4 a c$.

$$
\begin{aligned}
& a=6 \quad b=-1 \quad c=-22 \\
& b^{2}-4 a c=(-1)^{2}-4(6)(-22)=1+528=529
\end{aligned}
$$

Now use the Q-formula.

$$
\left.\begin{array}{l}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-1) \pm \sqrt{529}}{2(6)}=\frac{1 \pm 23}{12} \\
x=\frac{1+23}{12}=\frac{24}{12}=12 \quad x=\frac{1-23}{12}=\frac{-22}{12}=\frac{-11}{6}
\end{array}\left\{\begin{array}{l}
-\frac{-11}{6}, 2
\end{array}\right\}\right\}
$$

The product of two consecutive integers is 90 . find all such integers.

$$
\square x \xi x+1
$$

$$
\begin{array}{ll}
x(x+1)=90 & x^{2}+x=90 \\
b^{2}-4 a c=1^{2}-4(1)(-90) & x^{2}+x-90=0 \\
=1+360=361 & b=1 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-1 \pm \sqrt{361}}{2}=\frac{-1 \pm 19}{2} \\
\begin{array}{ll}
x=\frac{-1+19}{2}=\frac{18}{2}=9 & x=\frac{-1-19}{2}=\frac{-20}{2}=-10 \\
x+y=10 & x+1=-9 \\
9+10 &
\end{array}
\end{array}
$$

find two consecutive even integers such that

$$
\longrightarrow x \& x+2
$$

their product is 80.

$$
\begin{aligned}
& x(x+2)=80 \\
& \begin{array}{c|c}
x & x+2 \\
\hline 8 & 10 \\
\hline-10 & -8 \\
\hline
\end{array} \\
& \text { 8́̇O OR - } 10 \dot{\varepsilon}-8
\end{aligned}
$$

$$
\begin{gathered}
x^{2}+2 x+1^{2}=80+1^{2} \\
\frac{1}{2} \cdot 2=1 \\
(x+1)^{2}=81 \\
\text { use S.R.M. } \\
x+1= \pm \sqrt{81} \\
x=-1 \pm 9 \\
x=-1+9=8 \quad x=-1-9=-10
\end{gathered}
$$

The length of a rectangular garden is Aft longer than twice its width.
Area of the garden is $55 \mathrm{ff}^{2}$.
Find its dimensions,

$$
\begin{aligned}
& A=55 \\
& x(2 x+1)=55 \\
& 2 x^{2}+x-55=0
\end{aligned}
$$

$$
\begin{aligned}
a=2 \quad b=1 \quad c=-55 \quad b^{2}-4 a c & =1^{2}-4(2)(-55) \\
& =441
\end{aligned}
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-1 \pm \sqrt{441}}{2(2)}=\frac{-1 \pm 21}{4}
$$

$$
x=\frac{-1+21}{4}=\frac{20}{4}=5
$$

$$
x=\frac{-1-21}{4}=\frac{-22}{4}=\frac{-1}{2}
$$

NO School \Rightarrow Next Thursday

